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We utilize various ab initio approaches to search for a low-lying resonance in the four-neutron (4n)
system using the JISP16 realistic NN interaction. Our most accurate prediction is obtained using a J-matrix
extension of the no-core shell model and suggests a 4n resonant state at an energy near Er ¼ 0.8 MeV with
a width of approximately Γ ¼ 1.4 MeV.
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With interest sparked by a recent experiment [1] on the
possibility of a resonant four-neutron (4n) structure (see also
[2] for a recent communication) and while awaiting forth-
coming experiments on the same system [3–5],we search for
4n (tetraneutron) resonances using the high-precision
nucleon-nucleon interaction JISP16 [6]. The experiment
has found a candidate 4n resonant state with an energy of
0.83� 0.65ðstatÞ � 1.25ðsystÞ MeV above the 4n disinte-
gration threshold and with an upper limit of 2.6 MeV for the
width. The 4n system was probed by studying the reaction
between the bound 4He nucleus and the weakly bound
helium isotope 8He. It has been shown [7] that the four
neutrons in 8He form a relatively compact geometry. Hence,
the experimental study of the 4Heþ 8He collisions is a
promising avenue for the isolation of the 4n subsystem.
The experimental quest for the very exotic 4n structure

started almost 15 years ago when the possibility of a bound
4n (or tetraneutron) was proposed [8] in 14Be breakup
reactions (14Be → 10Beþ 4n). This experimental result,
however, has not been confirmed. Early calculations of the
4n system in a small basis [9] found it unbound by about
18.5 MeV. More recent state-of-the-art theoretical calcu-
lations have concluded that, without altering fundamental
characteristics of the nuclear forces [10], the tetraneutron
should not be bound. More theoretical calculations were
performed [11–17], all of them agreeing that a bound
tetraneutron is not supported by theory. In particular,
calculations performed in the complex energy plane to
search of multineutron resonances within the complex
scaling method [13–15] give quantitatively similar results
and point to the fact that the 4n resonance, if it exists, would
have a very large width (∼15 MeV), likely prohibitive for
experimental detection. The tetraneutron could, however,
exist if confined in a strong external field. In nature, this
would be the case of 8He, where the nuclear mean field is
strong enough to confine the tetraneutron around the tightly
bound α core. Once the field is suddenly removed by

knocking out 4He, it is expected that the tetraneutron will
disintegrate very fast due to its anticipated large width.
There is also a work [16] where the continuum response of

the tetraneutron was studied. The outcome was that there
exists a resonantlike structure at around 4–5 MeVabove the
threshold; however, this structure depends on the tetraneutron
production reaction mechanism represented by the source
term in this study, and the conclusionwas that the 4n probably
cannot be interpreted as a well-defined resonance but most
probably as a few-body continuum response in a reaction.
Nevertheless, our current knowledge of nuclear inter-

actions and many-body methods provide new opportunities
to probe exotic states above thresholds. We are further
motivated by the conclusion in Ref. [10] that, even though
the existence of a bound tetraneutron is ruled out, extrap-
olations of (artificially) bound state results to the unbound
regime imply that there may be a 4n resonance at about
2 MeV above the four-neutron threshold.
A complete investigation of the tetraneutron as a

resonant state would consist of performing calculations
of the actual experimental reaction 4He (8He, 8Be).
However, such a realistic calculation is currently out of
reach, though we are witnessing the first steps for such
theoretical calculations to become a reality [18,19].
We treat the 4n system with a realistic nonrelativistic

Hamiltonian which consists of the kinetic energy and the
realistic interneutron potential defined by the JISP16
interaction [6]. We solve for the 4n energies by employing
basis expansion techniques for the Hamiltonian.
Specifically, we employ the no-core shell model
(NCSM) [20] and artificially bind the 4n system by scaling
the interaction to track its lowest state as a function of that
scaling. We also employ the no-core Gamow shell model
(NCGSM) [21,22], which provides resonant parameters
directly in the complex energy plane. Finally, we extend
the NCSM using the single-state harmonic oscillator
representation of scattering equations (SS HORSE)
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formalism [23,24] for calculations of the S-matrix resonant
parameters.
First, to get an estimate of whether JISP16 can provide a

4n resonant state, we exploit the technique suggested in
Ref. [10] and perform pure NCSM calculations by construct-
ing an artificially bound 4n system by scaling up the NN
interaction. Our extrapolations to the unbound regime are in
quantitative agreement with Ref. [10], that predicts a reso-
nance at around 2 MeVabove the threshold but without any
indication of the width. We tried also a much more elaborate
technique of analytic continuation in the coupling constant
(ACCC) [25,26]. The ACCC requires exact results for the 4n
energy with scaled interactions, while the NCSM provides
only variational energy upper bounds; extrapolations to the
infinite basis space appear to lack the precision needed for a
definite prediction of the resonance energy and width.
In order to shed further light on a possible 4n resonance,

we solve the NCGSM with the JISP16 interaction. In the
NCGSM, one employs a basis set that is spanned by the
Berggren states [27] which includes bound, resonant, and
nonresonant states; they correspond to solutions of the
single-particle (SP) Schrödinger equation obeying out-
going (bound-resonant states) and scattering (nonresonant
states) boundary conditions. In this basis, the Hamiltonian
matrix becomes complex symmetric, and its eigenvalues
acquire both real and imaginary parts. The real part is
identical to the position of the resonant state above the
threshold, and the imaginary part is related to its
width Γ ¼ −2ImðEÞ.
We adopt the basis provided by a Woods-Saxon (WS)

potential for a neutron in relative motion with a 3n system.
We modify the WS parameters in a way that will support a
weakly bound 0s1=2 state and a resonant 0p3=2 state. For the
s1=2 and p3=2 shells, we include the 0s1=2 bound state, the
0p3=2 resonant state, and the associated nonresonant states.
We additionally include the p1=2 real scattering continuum
along the real momentum axis. We performed calculations
for several WS parameterizations supporting both narrow
and broad SP states. States with an angular momentum of
l > 2 are taken as HO states. We retain states through the
3g9=2 shells. For our NCGSM calculations, the ℏΩ param-
eter of the HO basis was varied from 4 to 14 MeV. Because
of the use of Berggren states for low angular momentum
partial waves, we observe a weak dependence of the results
on the ℏΩ parameter.
For the 4n calculation, we constructed Slater determi-

nants allowing two neutrons to occupy continuum orbits,
called the 2p-2h approximation. Taking the dependence on
basis space parameters into account, the NCGSM results
indicate a broad resonant state in the energy range Er ∼
2.5–3 MeV above the 4n threshold and a width ranging
from Γ ∼ 2.5 to 6 MeV. These variations reflect the
omission of additional p − h excitations. Nevertheless,
the real part of the resonance exhibits a robust character
at the current level of p − h truncation; i.e., it is nearly

independent of the WS parameterizations and independent
of the frequency of the HO basis.
At the same time, we observe that the resonance energy

decreases together with the width as the NCGSM basis
increases. Getting the converged resonance pole position in
this approach requires the NCGSM basis spaces beyond
our current reach.
Finally, following the J-matrix formalism in the scatter-

ing theory [28] as represented in the HORSE method [29],
we extend the finite NCSM Hamiltonian matrix in the HO
basis into the continuum by appending to it the infinite
kinetic energy matrix.
For the kinetic energy extension of the NCSM

Hamiltonian, we use the democratic decay approximation
(also known as true four-body scattering or 4 → 4 scatter-
ing suggested [30,31]) and first applied to the tetraneutron
problem [32–34] by Jibuti et al. Later, it was exploited in
other tetraneutron studies (see, e. g., Refs. [13,16,35,36]).
Democratic decay implies a description of the continuum
using a complete hyperspherical harmonics (HH) basis. In
practical applications, a limited set of HH is selected which
is adequate for the systems like the 4n which has no bound
subsystems.
The general theory of the democratic decay within the

HORSE formalism was proposed in Ref. [37]. We use here
the minimal approximation for the four-neutron decay
mode; i.e., only HH with hyperspherical momentum K ¼
Kmin ¼ 2 are retained in the kinetic energy extension to the
NCSM. This approximation relies on the fact that the decay
in the hyperspherical states with K > Kmin is strongly
suppressed by a large hyperspherical centrifugal barrier
f½LðLþ 1Þ�=ρ2g, where the effective momentumL ¼ K þ
3 and the hyperradius ρ2 ¼ P

4
i¼1ðri −RÞ2, R is the

tetraneutron center-of-mass coordinate, and ri are the
coordinates of individual neutrons. Note that all possible
HH are retained in the NCSM basis. The accuracy of this
approximation was confirmed in studies of democratic
decays in cluster models [38–41].
Realistic NN interactions require large NCSM basis

spaces and extensive computational resources. For compu-
tational economy, we also adopt the SS HORSE approach
[23,24] where we calculate the 4 → 4 S matrix SðEÞ at one
of the positive eigenenergies of the NCSM Hamiltonian,
E ¼ Eλ. In this case, the general HORSE formula for the S
matrix simplifies: Expressing SðEÞ through the 4 → 4
phase shifts δðEÞ,

SðEÞ ¼ e2iδðEÞ; ð1Þ
we obtain for the phase shifts [23,24]

δðEλÞ ¼ −tan−1
SNtot

maxþ2;LðEλÞ
CNtot

maxþ2;LðEλÞ
: ð2Þ

Here the maximal total quanta in the NCSM basis
Ntot

max ¼ Nmin þ Nmax, Nmin ¼ 2 is the quanta of the lowest
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possible oscillator state of the 4n system, and Nmax is the
maximal excitation quanta in the NCSM basis; analytical
expressions for the regular SNLðEÞ and irregular CNLðEÞ
solutions of the free many-body Hamiltonian in the
oscillator representation can be found elsewhere [37].
Varying Nmax and ℏΩ in the NCSM calculations, we obtain
the phase shifts and S matrix over an energy interval.
Parametrizing the S matrix in this energy interval, we
obtain information about its nearby poles and hence
resonances in the system.
The NCSM calculations were performed with Nmax ¼

2; 4;…; 18 using the code MFDn [42,43] and with ℏΩ values
1 MeV ≤ ℏΩ ≤ 40 MeV. The results for the 0þ tetraneu-
tron ground state are shown in the upper panel in Fig. 1.
The convergence patterns of the NCSM SS HORSE

approach to the 4 → 4 phase shifts using Eq. (2) are shown
in the lower panel in Fig. 1. We observe that the phase shifts
tend to the same curve when Nmax is increased. The
convergence is first achieved at the higher energies, while
larger Nmax yield converged phase shifts at smaller ener-
gies. We obtain nearly completely converged phase shifts at
all energies with Nmax ¼ 16 and 18.
We need only phase shifts close to convergence for the

phase shift parametrization. Our selected NCSM eigene-
nergies are enclosed by the shaded area on the top panel in
Fig. 1, since their resulting phase shifts form a single
smooth curve (see Figs. 2 and 3).
We will describe now how we utilize the NCSM

solutions within the SS HORSE method in order to obtain
resonance positions. Because of the S-matrix symmetry
property SðkÞ ¼ 1=Sð−kÞ and Eq. (1), the 4 → 4 phase
shift δðEÞ is an odd function of momentum k, and its
expansion in Taylor series of

ffiffiffiffi
E

p
∼ k includes only odd

powers of
ffiffiffiffi
E

p
:

δðEÞ¼v1
ffiffiffiffi
E

p
þv3ð

ffiffiffiffi
E

p
Þ3þ���þv11ð

ffiffiffiffi
E

p
Þ11þ���: ð3Þ

Furthermore, the 4 → 4 phase shifts at low energies, i.e., in
the limit k → 0, should behave as δ ∼ k2Lþ1. Note that, in
our case, L ¼ Kmin þ 3 ¼ 5; hence, v1 ¼ v3 ¼ � � � ¼ v9 ¼
0 and expansion (3) starts at the eleventh power.
Supposing the existence of a low-energy resonance in the

4n system, we express the S matrix as SðEÞ ¼ ΘðEÞSrðEÞ,
whereΘðEÞ is a smooth function of energy E and SrðEÞ is a
resonant pole term. The respective phase shift is

δðEÞ ¼ ϕðEÞ þ δrðEÞ; ð4Þ

where the pole contribution δrðEÞ takes the form [24]

δrðEÞ ¼ −tan−1½a
ffiffiffiffi
E

p
=ðE − b2Þ�: ð5Þ

The resonance energy Er and width Γ are expressed
through parameters a and b entering Eq. (5) as

Er ¼ b2 − a2=2; Γ ¼ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − a2=4

q
: ð6Þ

We use the following expression for the background phase:

ϕðEÞ ¼ w1

ffiffiffiffi
E

p þ w3ð
ffiffiffiffi
E

p Þ3 þ cð ffiffiffiffi
E

p Þ5
1þ w2Eþ w4E2 þ w6E3 þ dE4

: ð7Þ

The parameters wi, i ¼ 1, 2, 3, 4, 6, are uniquely defined
through the parameters a and b and guarantee the can-
cellation of the terms of powers up to 9 in the expansion (3).
Our phase shift parametrization is given by Eqs. (4), (5),

and (7) with fitting parameters a, b, c, and d. For each
parameter set, we solve Eq. (2) to find the values of the
energies Ea;b;c;d

λ and search for the parameter set ða; b; c; dÞ
minimizing the rms deviation of Ea;b;c;d

λ from the selected
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FIG. 1. NCSM results for the tetraneutron ground state energy
obtained with various Nmax (symbols) plotted as functions of ℏΩ
(upper panel). The shaded area shows the NCSM result selection
for the S-matrix parametrization; the solid curves are obtained
from the phase shifts parametrized with a single resonance pole
by solving Eq. (2) for the eigenenergies at given Nmax and ℏΩ
values. The 4 → 4 phase shifts obtained directly from the NCSM
results using Eq. (2) are shown in the lower panel.
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set of NCSM eigenenergies Eλ. Following this route, we
obtain an excellent description of the selected Eλ with an
rms deviation of 5.8 keV with a ¼ 0.724 MeV−1=2,
b2 ¼ 0.448 MeV, c ¼ 0.941 MeV−5=2, and d ¼ −9.1×
10−4 MeV−4. The resulting predictions for the NCSM
eigenenergies are shown by solid lines in the upper panel
in Fig. 1, where we also describe well NCSM energies with
large enough Nmax and/or ℏΩ not included in the mini-
mization fit. We obtain also an excellent description of
NCSM-SS-HORSE-predicted phase shifts as is shown by
the solid line in Fig. 2.
However, the resonance parameters describing the loca-

tion of the S-matrix pole obtained by this fit are surprisingly
small: the resonance energy Er ¼ 0.186 MeV and the
width Γ ¼ 0.815 MeV. Note that, looking at the phase
shift in Fig. 2, we would expect the resonance at the energy
of approximately 0.8 MeV corresponding to the maximum

of the phase shift derivative and with the width of about
1.5 MeV—a resonance with these parameters is expected to
be observed experimentally according to the conventional
interpretation of the phase shift behavior. The contribution
of the pole term (5) to the phase shifts is shown by the
dashed line in Fig. 2. This contribution is seen to differ
considerably from the resulting phase shift due to sub-
stantial contributions from the background phase (7), which
is dominated by the terms needed to fulfill the low-energy
theorem δ ∼ k2Lþ1 and to cancel low-power terms in the
expansion of the resonant phase δrðEÞ. Such a sizable
contribution from the background in the low-energy region
impels us to search for additional poles or other singular-
ities giving rise to a strong energy dependence which would
be separate from the background phase.
After we failed to find a reasonable description of the

NCSM SS HORSE phase shifts with a low-energy virtual
state, we found the resolution of the strong background
phase problem by assuming that the S matrix has an
additional low-energy false pole at a positive imaginary
momentum [44]. We add the false term contribution [24]

δfðEÞ ¼ −tan−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=jEfj

q
ð8Þ

to the phase shift to obtain the equation

δðEÞ ¼ ϕðEÞ þ δrðEÞ þ δfðEÞ; ð9Þ

replacing Eq. (4). This parametrization involves an additional
fitting parameter Ef. We obtain nearly the same quality
description of the selected 4n ground state energies with the
rms deviation of 6.2 keV with the parameters a ¼
0.701 MeV−1=2, b2 ¼ 1.089 MeV, c ¼ −27.0 MeV−5=2,
d ¼ 0.281 MeV−4, and a low-lying false pole at energy
Ef ¼ −54.9 keV. The respective 4n resonance at Er ¼
0.844 MeV and width Γ ¼ 1.378 MeV appears consistent
with what is expected from directly inspecting the 4n phase
shifts and what is predicted to be seen experimentally. The
parametrized phase shifts are shown by the solid line in Fig. 3
together with separate contributions from the resonant and
false pole terms. We note that corrections introduced by this
new parametrization to the solid lines in Figs. 1 and 2 are
nearly unseen in the scales of these figures.
Conclusions.—Our results with the realistic JISP16

interaction and the SS HORSE technique show there is
a resonant structure near 0.8 MeV above threshold with a
width Γ of about 1.4 MeV. Our preliminary NCSM SS
HORSE results with other NN potentials confirm the
conclusion of Ref. [17] that the tetraneutron resonance
should not be very sensitive to the choice of the NN
interaction: The 4n states at energies below a few MeVare
heavily influenced by the relative kinetic energy which, due
to the Pauli principle, receives a significant effective
attraction. This is the first theoretical calculation that
predicts such a low-energy 4n resonance, without altering
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any of the properties of the realistic NN interaction. Our
result is compatible with the recent experiment [1]. Our
complex energy calculations also suggest a broad low-lying
4n resonance that agrees marginally with the experiment
due to the large error bars for both the current application of
the NCGSM and the experiment.
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